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SUMMARY

The buckling and snapping behaviour of an elastic structure sub-

jected to a single generalized load is discussed_ the analysis being

based on a more general study of elastic stability recently presented by

the author. The discussion is orientated to high-light the more physical

and intuitive aspects of elastic stability_ and examples of the various

phenomena are indicated° The examples include problems of shell buckling

thatare of considerable interest at the present time°

The two extremecases of dead and rigid loading are readily studied

with the aid of the general theory° Thus if the 'loading parameter' of

the general theory is equated to the magnitude of the load_ a direct

treatment of the dead-load problem is obtained_ in this application the

auxiliary loading parameter of the general theory can be identified as

the corresponding displacement of the generalized load. Conversely;

the loading parameter can be equated to the magnitude of the correspond-

ing displacement; to givea direct treatment of rigid loading_ and the

auxiliary loading parameter can then be identified (with a change of sign)

as the magnitude of the generalized constraining loado

The two direct treatments are entirely distinct when applied to the

same structural system° For this reason the problem of rigid loading

is finally re-studied in the context of the dead-load formulation° In

this manner the inter-relationships between the"external stability" of

a structure under dead load_ and the "internal stability" of the structure

under rigid load can be observed°

The salient analytical features of the paper are summarized in a

resume_ and the behaviour of an illustrative buckling model is analysed

in an appendix.
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I. INTRODUCTION

The stability of elastic structures has attracted considerable

attention in recent years_ due to the extensive use of thin metal shells

as load-carrying components in missile structures. These thin shells

are liable to fail by instability_ long before the onset of appreciable

material yielding° The buckling behaviour of shell structures is more-

over extremely complex_ and research workers in this field have been

forced to examine the fundamental concepts of elastic stability with

great care.

In predicting the instability of a structure or structural component

it can frequently be assumed that the structure is subjected to a single

generalized conservative load_ themagnitudeof which increases slowly

with time° A theoretical prediction of elastic instability can then be

based on a statical analysis of the structure under the given loading

system. The success of this statical approach clearly rests on the

ability of the analyst to identify_ in the equilibrium paths of the

structure_ the equilibrium state at which the initial stability of the

structure will be lost.

If the initial stable equilibrium path of the structure yields a

locally maximum value of the load_ it is apparent that a further increase

in load will give rise to a dynamic snap of the structure. The structure

is said to snap from such an extremumo Moreover_ with the exclusion of

a special case_ Poincare (1885) showed that in the absence of such an

extremum the stability of the initial equilibrium path can only be lost

at a "point of hifurcation"_ at which the path intersects a second

distinct and continuous path. The structure is said to buckle at such

a point of interseetion_ whether or not a dynamic snap of the structure

is involved.

In the light of these observations it is clear that the two phen-

omena of snapping and buckling are of particular interest to the analyst

in his theoretical study of elastic instability°

- i -
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A theoretical studyof this nature will in general be supplemented

by the experimental study of a 'model' structure under the same ideal-

ized loading system. In such a study it is frequently advantageous to

test the model in a 'rigi_ loading device_ which prescribes values of

the corresponding deflection, rather than the magnitude of the generalized

load. This rigid loading of the model is in contrast to the approxi-

mately dead conditions of prescribed load which will usually be encountered

by the structure in service. Thus when such a rigid test is performed_

the behaviour of the structure underdead loading must subsequently be

infered from the observed behaviour of the model under rigid loading°

Clearly the snapping and buckling behaviourof a structure under

a single generalized load_ which might be either dead or rigid in nature,

is of considerable practical importance° It is the aim of the present

paper to throw as much light as possibleon this behaviour°

The paper, being thus a discussion of the stability of a 'general'

elastic structure_ represents a development of the so-called "general

o • ,,

theory of elastic stab_l_ty _ which is itself a division of classical

mechanics_

Studies in the general theory of elastic stability can be made in

terms of generalized coordinates, or in the con_e_ of continuum

elasticity. The former approach_ being the simpler mathematically_ is

useful for developing new physical conceptsj which can later be dis-

cussed more rigorously in the context of continuum elasticity° General

studies of elastic stability can secondly be loosely classified as either

'linear' or 'non-linear'

The _linear' studies are primarily concerned with the critical

equilibrium states themselves_ and are not concerned with the precise

equilibrium path configurations in which these states might be found°

Notable 'linear Y studieshave been made by Westergaard (1922)_ Ziegler

(1956)_ Pearson (1956), Hill (1957) and Koiter (1962). Of these_

Westergaard and Ziegler worked in generalized coordinates and discussed

only linear eigenvalue problems, while Pearson_ Hill and Koiter studied

the more general problem in the context of continuum elasticity°

-- 2 m



'Non-linear' studies are concerned with the precise equilibrium

path configurations that might be found in the vincinity of a critical

equilibrium state° These configurations are of particular interest to

the analyst, and form the subject of the present paper° 'Non-linear'

studies have been made by Poincar6 (1885), Koiter (1945) and Thompson

(1963). Koiter worked in the context of continuum elasticity and

limited his attention to branching conditions, while Pomncare and

Thompson discussed both branching and snapping configurations in terms

of generalized coordinates.

The phenomena of snapping and buckling were thusfirst discussed

in the classic paper of Poincar6 (1885), which laid the foundations of

the general theory of elastic stability. They were subsequently analysed

in detail by the author in 1963. This recent study, which demonstrated

for the first time the essential inter-relationships between the two

phenomena, forms the basis of the present paper.

More technical discussions of structural stability have been

presented by Timoshenko (1936) Pfluger (1950), Hoff (1954), Thompson

(1961a) Ashwell (1962) and Libove (1962).

In the present paper the results of the recent general study of

elastic stability (Thompson - 1963) are first summarized in a manner

that highlights the physical aspects of the various phenomena. The

theory is then applied to the specific problem of an elastic structure

loaded by a single generalized conservative load.

It is seen that the 'loading parameter' of the general theory can

be equated to either the magnitude of the generalized load, or to the

magnitude of the corresponding deflection. In this manner the general

theory yields a direct treatment of the two extreme cases of dead and

rigid loading, which in the terminology of Ashwell (1962) are associated

with the "external" and "internal" stability of the structure respectively.

The two direct treatments are however entirely distinct, and the

problem of rigid loading is finally discussed in the context of the

dead-load analysis. In this manner the inter-relationships between the

concepts of internal and external stability are examined.

7
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Following the general study_ the paper is limited in scope to a

consideration of the most general snapping and buckling configurations

that can arise in the equilibrium paths of a structure. Within this

limitation the paper represents an exposition of the basic concepts of

elastic stability2 that is broad and intuitive rather than essentially

rigorous in nature.

8
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II. GENERAL REMAR_S

It has been indicated that an elastic structure_ which might be

subjected to either dead or rigid loading_ will in general lose its

initial stability by either buckling or snapping. The structure is said

to buckle when the initial stable equilibrium path loses its stability at

a point of intersection (bifuncation). The structure is said to snap

when the path loses its stability on yielding the first locally maximum

valueof the loading parameter.

The buckling phenomenon is illustrated by the equilibrium paths of

Figure i_ in which P is the magnitude of a generalized load, and c

is the corresponding deflection° These paths_ if the initial path were

linear, could represent the behaviour of an Euler strut constrained

laterally by a non-linear spring _ (Tsien 1942); theycould also represent

the behaviour of certain rigid-jointed triangular frames (Britvec 1960).

In this and in subsequent figures a stable path is indicated by a

continuous curve, and an unstable path by a broken curve. A dynamic

snap of the structure is represented by a heavy arrow°

•P '• The point of intersection reproduced in Figure i is the most

general that can arise (Thompson 1963)_ and is exhibited by structures

that encounter different conditions as they deflect in either_of the

two possible directions° Thus in the problemof theconstrained Euler

strut_ the spring is assumed to be 'hard' in compression_ (that is to

say the incremental stiffness increases with deflection) and 'soft' in

tension. The strut has thus a definite preference to deflect in the 'soft'

direction_ and the two branches of the post_buckling path aredistinct

on a plot of the load against the end-shorteningo

j'

:::ii:: (

::,i:!•i'i! L •

Most structures are however designed with a high degree of symmetry,

and this general buckling behaviour is fairly rare° Thus the majority

of structures encounter identical conditions as they deflect ineither

of the two possible directions_ and the two branches of thepost-buckling

curve are consequently coincident on a plot of the load against the

corresponding deflection. This non-general behaviour is illustrated

I0
5
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by the unconstrained Euler strut, for which the two branches rise and

are stable. A further example is provided by the axially-loaded cylin-

drical panel (Koiter 1955), for which the two branches fall and are

consequently unstable. These two non-general buckling configurations

are illustrated in Figure 2, in which the indicated regions of stability

and instability are applicable both to dead and rigid loading conditions.

Followingthe recently developed general analysis (Thompson 1963),

attention is restricted in the present paper to the general buckling

condition of Figure i. Clearly_ however it is most desirable to extend

the general analysis to include the special cases of Figure 2 in the

near future.

The snapping phenomenon is illustrated by the equilibrium paths

of Figure 3. These paths might represent the behaviour of the constrain-

ed Euler strut in the presence of an initial imperfection (Tsien 1942):

they might also represent the behaviour of an initially imperfect cylin-

drical shell under axial compression (Donnell and Wan 1950).

A perfectly general extremum in the equilibrium paths of a structure

will define a perfectly general snapping configuration, and attention is

restricted in the paper to such a configuration. It is clear that the

majority of snapping configurations encountered in practice will be

perfectly general in this sense.

The present paper is designed to throw as much light as possible

on these two phenomena of snapping and buckling, under both dead and

rigid loading conditions. The discussion is easily extended, following

the lines of Thompson (1961 a), to the problem of semi-rigid loading

which prevails in many experimental analyses.

The behaviour of a simple two-degree-of-freedom bucklingmodel is

analysed in the Appendix and is used to illustrate the salient features

of the paper.

12
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III. FORMULATION OF THE PROBLEM

The problem that we wish to study is that of a conservative elastic

structure loaded by a single generalized conservative load (Figure 4).

A more precise definition of the structural system under consideration

can be formulated from the energy function introduced in section 5o

Inparticular we wish to discuss the stability of the structure

under both dead and rigid loading conditions°

In the case of dead loading, the magnitude, P_ of the generalized

load is imposed on the structure at a given state of loading; and the

slow variation of P with time (t) describes the loading process° In

the contrasting case of rigid loading_ the magnitude_ _; of the corres-

ponding deflection is prescribed as a function of time°

It is assumed that the deformations of the structure can be analyzed

into mode-forms_ the amplitudes of which will supply a set of generalized

coordinates for the structure° It is further assumed that the behaviour

of the structure can be described satisfactorily by the use of a large

but finite number of coordinates°

In a direct treatment of dead loading_ it is convenient to intro-

duce a set of m generalized coordinates_ Wi_ which defines the

deformed state of the structure when the corresponding deflection_ e_

is free to vary (Figure 4a)o In this case_ c._ and the strain energy

of the structure_ U, are both single-valued functions of the W i, Follow-

ing Ashwell (1962)_ we shall introduce the term external stability to

describe the stability of the structure under dead loading°

For a direct treatment of rigid loading, it is convenient to intro-

duce a set of m - i generalized coordinates_ Xi_ which defines the

state of the structure under an imposed value of e (Figure 4b)o In

this case the single-valued strain energy function can be written as

U(Xi, e)° We shall use the term internal stability to describe the

stability of the structure under rigid loading°
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IV. GENERAL THEORY

4.1o Introduction. The general study of elastic stability recently

presented by the author is summarized in the present section.

The analysis of this general study is essentially non®linear, in

the sense that the critical path configurations are discussed analytically.

In the present summary, however, the analysis has been linearized (in an

incremental sense), so the critical path configurations of snapping and

buckling are only discussed in a qualitative manner°

The presentation of the theory is moreover essentially new. The

more physical aspects of the theory hav@ been emphasized_ and the

resulting treatment provides a useful insight into the snapping and

buckling phenomena. The introduction of vector notation has facilitated

the presentation°

The general theory is applicable to a structural system described

by an energy function V(Qi, A)_ where the Qi are n generalized

coordinates_ and A is a loading parameter° Thus the theory will yield

a direct treatment of dead loading (section 5oi) if we set A _ p_ or a

direct treatment of rigid loading (section 5°2) if we set A _ _o

Moreover we shall introduce in the general theory an auxiliary

loading parameter Y, where Y _ ® (_V/_A). Then, when we set A _ p

in the treatment of dead loading_ Y can be identified as the correspond-

ing deflection c. Similarly when A is set equal to cj the auxiliary

parameter (with a change of sign) can be identified as the magnitude of

the load_ so that Y = -P

4°2. Structural System. Let us consider the behaviour of a con-

servative structure described by n generalized coordinates Qi o

We shall define a coordinate space by associating the Qi with

rectangular axes in n-space_ and we shall introduce the unit vectors

h i in the Qi directions. It is however perhaps worth noting that a

more elegant and intrinsic treatment is possible if it is assumed that

a metric coordinate space is specified _ priori.



./L
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Let us now introduce a loading parameter A_ such that at different

but constan_ values of A_ the total potential energy of the system can

be written as V(Qi_ A)o The single-valued energy function_ V_ is

assumed to be continuous and well-behavedo

We now associate A with an axis orthogonal to all the _._ to
i

define an (n +l)®dimensional load-coordinate space° For convenience we

shall introduce no vector in the A-direction_ so that all vectors will

lie in the n-dimensional coordinate space

The n equilibrium equations (_V/_Q i) = 0 define a series of paths

in the load-coordinate space as A is varied° A single path is shown

in the schematic diagram of Figure 5_

These n equilibrium equations can be represented by the single

vector equation grad V = O_ Here_ in agreement with our convention

that vectors (and consequently vector equations) refer only to the

coordinate space_ grad V is the gradient of V at a constant value of Ao

4°5° Principal Coordinates and Stability Coefficients° Let us

consider the equilibrium state A of Figure 5J and introduce the lower

case symbols_ h_ _ etco_ to denote changes in the variables from this

state° At state A all the first derivatives_ _V/_Qi_ are zero, and

to a first approximation we can write the change of V in the vicinity

of state A as

Z
(1)

Here, and subsequently_ all summations range from i to no The points

at which derivatives are to be evaluated will always be apparent from

the context: the derivatives are here to be evaluated at the basic

state A.

The stability of state A is determined by the second variation of

V at constant A_
18
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=A 2v°ivj =0
qiqj

It is convenient to reduce this expression to a sum of squares by a

suitable change of coordinates° We shall thus introduce a new set of

coordinates_ ui_ by means of the linear transformation represented by

the n equations

=_ C_ oU.rl 1
forall r

Here the determinant l_ijl is non-zero_ and the _ij

chosen to eliminate the cross-terms of 52Vo

Then in the principal coordinates_ ui_ we have

l_ _2v 252v : _ _ u.1
i

coefficients are

(2)

and the stability of the basic state is determined by the set of n

,, ° . _2 vstabzlmty coefficients", C. _ ( /$u )_ assuming that these are all
1

non-zero.

The reduction of a quadratic form to a sum of squares can be accomp-

lished in an infinite number of ways, so the stability coefficients as

defined above are not unique° To eliminate this undesired lack of

uniqueness we shall specify that the u. axes shall be rectangular in1

coordinate space_ and to the same scale as the _ axes_ The stability

coefficients and the associated principal axes are now uniquely defined

for a given system and a given basic state° (To be precise we should

add "for a given coordinate space" The coordinate space has been

defined arbitrarily in the present paper; as previously noted however_

a more elegant treatment is possible if it is assumed that a metric

coordinate space is given _ priori_)

directions_
We shall introduce a set of unit vectors Ji in the u i

noting that there is only an arbitrary distinction between the +uo and
1

- i0 -



-u. directions° The transformation of coordinates is shownschematically

in Figure 5o

4°4. Equilibrium Paths. Equilibrium paths in the vicinity of state

A_ assuming this to be a general non-critical equilibrium state_ are

defined to a first approximation by the n scalar equations (Sv/Sqi) O,

where v is given by equation (1). These equations can be replaced by

the single vector equation

_ >

A grad V = X _grad V + qi _i grad V

=0
(3)

The first vector of the right-hand side can be interpreted_ with

a change of sign, as a small disturbing force h_ (in n-space) associated

with a small increase in A. Thus under an imposed increase of A (rep-

resented by h)_ the system will move to a new co_'iguration in which

this disturbing force is balanced by the restraining force

r i - qi grad V

We denote the small movement of the system by the vector ht_ so that t

is the response of the system to a unit change in Ao

The above discussion is represented schematically in Figure 5°

The disturbing force produced by a unit change in

a
= - _ grad V

A is given by

,f • _,

-r

!i:q!i̧•

which can be ww'itten as

Thus the scalar variable

- ll -



_V

is clearly of particular importance in representing the 'action' of the

loading parameter A o Weshall refer to • as the auxiliary loading

parameter.

Introducing the coefficients

S = = - and T =
r _ _

r r

we can write to a first approximation

@--AY =_ S.u. + Th
L_ 1 1

and

= grad @ :_ SiJ i
(4)

The unique equilibrium path in the vicinity of a general (non-

critical) basic state is readily located in the principal coordinate

system° Thus rewriting equation (i) in the principal coordinates u.
l

we have

v = _ _u2
1

( Z "I2 5v _2v _ _2v _2
u. + + ui h+--

(s)

and setting

_V

_-d-=O
r

gives

u
r

20

- 12 -



that is

u
r : _(Sr/C r) for all r

(6)

Thus the incremental response of the system is given by

, II .=

Moreover the change in

so that we can write

S 2

l_path = _, (_-_)

along the path is given by

(7)

: [_,(S[/Ci)+T]k_

+ T (s)

If all the stability (incremental stiffness) coefficients at

state A are equal, the response vector _ (equation 7) will have the

same direction as the disturbance vector _ (equation 4). When the

coefficients are unequal, the response vector will have increased com-

ponents in the directions of reduced stiffness.

4.5. Critical Equilibrium State. As the basic state under consid-

eration is allowed to move along an equilibrium path, the u. axis
I

will rotate, and the coefficients S. and C. will vary in a continuous
I I

ma nne r •

Thus as the system is loaded from an initial stable state, the

initial stability can only be lost at a critical equilibrium state for

which at least one of the stability coefficients (C I say) is zero. The

other stability coefficients will in general be positive and non-zero

at the critical equilibrium state_

Since

_2v

12__I I

: CI • C2 • C3 .... Cn

I̧ • -



we can observe that the two-determinants

and
_2 V

z j

will be zero at a critical equilibrium state.

With C I = 0 and Cs > 0 for s _ i_ the second variation of

_2V, -_V, is zero in the two directions + jl _ and positive in all other

directions. We observe moreover that the restraining force r can now

have no component in the directions; that is to say r oJl = 0o

4.6. Snapping Condition. In general the disturbance vector d

will have a finite component in the direction jl o That is to say

JiJo

(9)or alternatively

SIlO

We shall observe that under this condition the loss of stability is in

general associated with a snapping point.

We assume without loss of generality that d has a positive com-

ponent in the direction +jl _ so that S I is positive°

Let us allow the basic state A to move along a stable equilibrium

path with increasing A towards a critical equilibrium state for which

C I = 0 (and Cs > 0 for s _ i)o Thus the stability coefficient C I

will be dropping to zero.

Since the disturbance vector d has a component in the direction

of decreasing stiffness_ the component of the response vector in this

direction will be increasing (equation 7). Finally_ at the critical

equilibrium state_ the response vector _ will have the direction of

+Jl' and an infinite magnitude°

In this manner the equilibrium path will in general reach a maximum

value of A at the critical equilibrium state_ as shown in Figure 6o
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This maximum can be interpreted as the inability of the restraining

force r to provide a (positive) component in the direction (®)jl _

it should be remembered that we are dealing with the case in which the

disturbance vector d has a finite (positive) component in the direction

Moving along the equilibrium path through the critical equilibrium

state_ C I drops to zero and becomes negative° Thus beyond the maximum

the path is unstable (with respect to Ul)_ as indicated in Figure 6 by

the broken curve° The system loses its stability at this maximum_ and

will snap dynamically to a new equilibriUm configuration°

The path defines a smooth maximum on a plot of A against any Qi_

or on a plot of A against Y o

4.7° Buckling Condition° A special case of considerable interest

arises when_ at the critical equilibrium state_ the disturbance vector

has no component in the direction of zero stiffness° That is when

_o_=0

or alternatively (i0)

S I = 0

J

We shall observe that under this condition the loss of stability is in

general associated with a point of intersection (bifurcation).

Qualitatively it is clear that_ the disturbance vector having no

component in the direction of zero stiffnessj the infinite response

will no longer arise° In other words_ while the restraining force is

still unable to provide a component in the Jl direction_the disturbing

force now has no component in this direction_ ignoring questions of

stability_ the structure can still support an increase in load_

Thus as we move along a stable path toward a critical equilibrium

state with C I and S I dropping to zero_ we see the component of the

response vector in the direction of incipient instability_ tl_ tending

to an indeterminate form° That is_ from equation (7) we have





S
i 0

tl=_ll --_

A large-deflection non-linear analysis (Thompson1965) shows that

this componenthas in general two alternative finite values at the

critical equilibrium state. Thus the simultaneous vanishing of S1

and C1 yields a point of intersection (bifurcation) at which two
distinct and continuous equilibrium paths intersect (Figure 7)°

Moving along the initially stable path (A) with increasing A_ the

stability coefficient C1 drops to zero at the critical equilibrium
state, and then becomesnegative. Conversely the second path (B) is

initially unstable, so that the stability coefficient corresponding to

C1 is originally negative: with increasing A this stability coeffi-
cient increases to zero at the critical equilibrium state, and then

becomespositive° Thus in the terminology of Polncare (1885) there is

an "exchange of stabilities" between the two paths°

Although the second path is stable above the branching point, the

critical equilibrium state itself is unstable with respect to Ul_ so
that in the presence of the smallest disturbance, the system will lose

its stability at this state and snap dynamically to a new equilibrium

configuration.

The two paths intersect in an arbitrary manner on a plot of A

against any Qi However since there is no indeterminacy in the non-

critical componentsof the response vector [ioeo ItrlA : _trl B = (Sr/Cr)
for r _ 1] and since the disturbance vector _ = grad Y has no com-

ponent in the direction jl _ it follows that the two curves intersect
tangentially on a plot of A against Yo The commonslope is moreover

given by equation (8) if we set

k •

2 02S I
-- _ _ 0

C 0
i

These details of the intersection can be seen on Figure 7.
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V. APPLICATION OF THE GENERAL THEORY

5.1. External Stability of a Structure. It is clear that the

preceding general analysis is directly applicable to the problem of a

structure under a single generalized dead load which has been formula-

ted in section 3o Thus if we merely set A _ P_ and Qi _ Wi (so that

n = m)_ the general discussion could be reproduced as it stands to supply

a direct treatment of the dead-load problem.

In this direct treatment the energy function V_ now a function of

P and the W., can be written as
1

v : i) - P (wi) (ll)

where U(W i) is the strain energy of the structure°

We can observe that V is now linear in A(E P), which was not

necessarily the case in the general theory° Moreover since

_  (wi)

we have the significant result that when the loading parameter A is

equated to the magnitude of the generalized load P; the auxiliary

loading parameter _ will represent the corresponding deflection of the

load; c°

The equilibrium equations of the system can be written as

const P

_u _
:° (m)

I i

The results of the general analysis can now be interpreted as the

well-known conclusions for dead loading_ which are summarized as follows.

Under a slowly increasing load the external stability of a structure

will be 'lost' at the first critical equilibrium state encountered. This

critical equilibrium state will in general correspond to a snapping

point; under certain conditions it will correspond to a point of inter-

section.



At a snapping point the equilibrium path of the structure reaches

the first locally maximumvalue of the load_ as shown in Figure 3a. The

path in general yields a smoothmaximumon a plot of the load against

its corresponding deflection, or on a plot of the load against any

'general lateral deflection' (In the present discussion the term

'general lateral deflection' is used to describe any general coordinate_

as distinct from any special coordinate such as the corresponding de_

flection or one of the principal coordinates°) After the maximumthe

path is unstable°

At a general point of intersection the initially stable path inter-
sects a second distinct and continuous path (Figure la)o The critical

equilibrium state itself is unstable_ and the paths exhibit an exchange

of stabilities with increasing loado The form of the intersection is

arbitrary on a plot of the load against any 'general lateral deflection'_

but the two paths intersect tangentially on a plot of the load against

its corresponding deflection°

It should be observed that both the snapping condition_ and the

general buckling condition give rise to a dynamicsnapof the structure°

Onefurther result_ applicable exclusively to the dead-load problem_

can finally be indicated° Since V is now linear in _ P)_ the
T _ - (_2V/_A2) is identically zero_ so that equation (8)coefficient

becomes
S2

Path i
(13)

Thus if l_P/_IPat h is negative_ it follows that at least one of the

C_ coefficients must be negative_ This is a restricted proof of the
l

well®known result that an equilibrium path is externally unstable over

any region for which it has a negative slope on a plot of the load

against the corresponding deflection°

5°2. Internal Stability of a Structure° The general theory of

section 4 is likewise immediately applicable to the rigid®load formula-

tion of section 3 _ if we set A- c and Qi - Xi° It should be

noted that n is now equal to m ® i

18_
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The total potential energy function V

function

equations

is now the strain energy

U(Xi_ e)_ and equilibrium states are defined by the m - i

The equilibrium states themselves are of course the same as those defined

in the dead-load formulation by the m equations

_V = 0

_i const p

Any deformed state of the structure compatible with an imposed value

of c_ can be held in _equilibrium _ by the application of suitable con-

straining forces on the Xo coordinates° Then for any such deformed
l

'equilibrium _ state (which might of course be a true equilibrium state

for which all the contraining forces are zero) the principle of virtual

work gives us the equation

const X°
1

so that we have the equality Y = ® Po Thus when the loading parameter

A is equated to the corresponding deflection_ e a of a generalized load_

the auxiliary loading parameter Y will represent_ with a change of sign_

the magnitude of the constraining load_ Po

The results of the general analysis can now be interpreted as

follows.

Under a slowly increasing displacement (e) the internal stability

of a structure will be 'lost' a_ the first critical equilibrium state

encountered. This critical equilibrium state will in general correspond

to a snapping point] under certain conditions it will correspond to a

point of intersection°

29
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At a snapping point the equilibrium path of the structure reaches the

first locally maximum value of the displacement (_) as shown in Figure 3bo

The path in general yields a smooth maximum (of the imposed displacement

c) on a plot of the constraining load against the imposed displacement_

and on a plot of a 'general lateral deflection' against the imposed dis-

placement° It is perhaps worth noting however that the path is in general

incrementally linear with no stationary point on a plot of the constrain-

ing load against a 'general lateral deflectio_o The path loses its in-

ternal stability at the critical equilibrium state_ and the system will

snap dynamically from this state°

The complete analogy between the dead and rigid_load snapping points

is apparent_ although for a given structure (Figure 3) the twopoints

are of course essentially unrelated°

At a general point of intersection the initially stable path interw

sects a second distinct and continuous path° The critical equilibrium

state is itself internally unstable_ so the system will snap dynamically

from this state_ although the paths exhibit an exchange of internal

stabilities with increasing eo

The general point is characterized by an arbitrary intersection on

a plot of the constraining load against a 'general lateral deflection'

and by a tangential intersection on a plot of the constraining load

against the imposed displacement° The details of this path intersection

are thus identical with those observed in the dead-load discussion of

the previous section°

Thus there is clearly no distinction between the path intersection

observed in the dead®load analysis and that observed in the present

rigid-load analysis° In other words the simultaneous vanishing of S I

and CI in the direct treatment of dead loading_ describes the same

deformed state of a structure as the simultaneous vanishing of S I and

CI in the direct treatment of rigid loading°

Thus a point of intersection in the equilibrium paths of a structure

is associated with a 'loss' of both internal and external stability° A

structure losing its initial external stability at a general point of

intersection will also lose its initial internal stability_ as indicated

in Figure io



VIo INDIRECT ANALYSIS OF INTERNAL STABILITY

6.1o Introduction° The direct treatment of internal stability_

while indicating the behaviour of a structure under an imposed displace-

ment, is essentially distinct from the direct treatment of the same

structure under an imposed loado Consequently it is instructive to

study the problem of internal stability in the context of the dead-load

analysis: that is in the context of the general analysis with A _ p_

and Qi _ Wool

Such a study is made in the present section° The analysis is essen-

tially 'linear' in nature_ and the range of validity of the analysis is

not explored°

6.2° Structural System° Let us consider the structure of Figure 4,

described by the m generalized coordinates Wo and the strain energy
i

function U(Wi)_ loaded now by the slow variation of the imposed displace-

ment e(Wi)o

Equilibrium states are defined by the equation

''lSUlconst e = 0

which can be converted by the introduction of a Lagrange multiplier, p,

to the m equations

= _u _
 w-7 :o (14)

It can be seen that these equations define (as they must) the same equil-

ibrium states as those defined in the dead-load analysis by equations (12)o

Moreover the value obtained for the Lagrange multiplier will be the

magnitude of the constraining load_ Po

6°Zv Stability Coefficients° To investigate the stability of an

equilibrium state under rigid loading we must study the second variation

of U(Wi) with the restraint Ae = O° Clearly however we are free to

study the second variation of the dead-load energy function



v(P,wi) :u(wi) Pc(wi)

with the same restraint.

Thus while the external stability of an equilibrium state is deter-

mined by the second variation of V given by

_, 2 i _ 2
_2V u. :_- C u.

52V = _i _u 2 1 2 i I

1

the internal stability will be determined by the same expression with the

constraint

@ = 5e = _ S.u.mm : 0

The acceptance of this statement without qualification is the essentially

'linear' and non-rigorous feature of the following analysis.

Two results are immediately seen° If the structure is stable under

dead loading, so that all the C. are positive_ the structure must he
m

stable under rigid loading° Secondly_ if the structure has two or more

degrees of instability under dead load (so that two or more of the C.
m

are negative) then it is unstable under rigid loading: this conclusion

follows immediately from a result of Courant and Hilbert (1953). Thus

the only case of further interest arises when a single dead-load stability

coefficient is negativev

Let us write

2A
Z : 52V =2 L 1 1

and determine the m - i stationary values of Z on the 'sphere'

_, 2
u. = 2

i

with the constraint

32
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@= _ S.u. =01l

Without the constraint, the m stationary points of Z occur on the

u. axes_ to give the dead-load stability coefficients Z = CI, Z = C2_i
oo. Z = C o With the constraint, the stationary values will representm
a set of rigid-load stability coefficients°

Introducing two Lagrange multipliers [(i/2)p I] and P2 we consider
the auxiliary problem of locating the stationary points of

f -%

211Z2 ZZ = _ L Ciu.l _ Pl u.l - 2 P2 Siui

The subsequent analysis is presented in detail in the Appendix_ and the

required stationary values of Z are given by the

satisfying the equation

/
/

,
ci Pl, (ci-pl )2

m - i values of pl

= 0 (15a)

which can in general be simplified by omitting the denominator to give

s
X_ l

L Ci - p I
= 0 (15b)

Thus a set of stability coefficients for rigid loading is given by

the m - i roots of equation (15)o

Moreover for a change of internal stability this equation must be

satisfied by Pl = 0o It follows that the general condition for a change

of internal stability can be written as

_(s[/c i) : o (16)
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6°4o Snapping Condition_ In general a loss of internal stability

will not coincide with the vanishing of any of the S. or C. coeffi-
i l

cientso Moreover_ when all the C. coefficients are non-zero, a loss
z

of internal stability will be characterized by the vanishing of

as indicated by equation (16).

Now we have already established that

Y, (equation 13)

It follows that the initial internal stability of a structure will in

general be lost at a snapping point, at which the equilibrium path of the

structure reaches the first locally maximum value of eo

The previous discussion of a rigid-load snapping point is thus

confirmed°

A general critical path configuration is shown in Figure 8. It

should be noted that the equilibrium path yields a maximum value of

when the response vector _ has no component in the direction of the

disturbance vector d = grad e°

It has been indicated that an equilibrium state of a structure can-

no_ be unstable under rigid loading if it is stable under dead loading°

Thus a rigid-load snapping point will in general be encountered after a

dead-loadsnapping point, as illustrated by the equilibrium paths of

Figure 3°

6,5 Buckling Condition° If one of the S. coefficients drops to
1

zero_ equation (15b) loses one of its roots, and the missing solution

will be supplied by the complete equation_ (15a). The necessary analysis

is presented in the Appendix, and it is shown that if S I = O, the mis-

sing solution is given by 01 = CI_ if all the C.l are distinct° That

is to sayj if one of the S. coefficients is equal to zero_ equation
i

(15b) will supply m - 2 internal stability coefficients_ and the missing
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x •

I' r

stability coefficient will be equal to the corresponding dead-load sta-

bility coefficien_o

It is clear that this special solution corresponds to the fact that

with S I = O_ the expression

S.u. = 0i i

offers no constraint in the principal direction jl o

Since with S I = 0 one internal stability coefficient is given by

01 = CI_ it follows that, as a special case_ the internal stability of

a structure will be 'lost' if S I and CI vanish simultaneously. In

this case the first term of equation (16) is indeterminate_ being essen-

tially 02/0-0°

As we have seen in section 4_ the simultaneous vanishing of SI

and CI yields a point of intersection_ so the previous discussion of

rigid-load buckling is confirmed°

The above discussion demonstrates that the simultaneous vanishing

of S I and C I as defined in a direct dead®load analysis implies

the vanishing of C I as defined in a direct rigid-load analysis. The

simultaneous vanishing of the dead®load coefficients must also imply

the vanishing of S I in a direct rigid-load analysis_ and a proof of

this inter-relationship is readily derived from the equality

It is instructive to note that a general branching point can be

regarded as the coincidence of two snapping points; that is the coinci-

dence of an extremum with respect to P_ and an extremumwith respect

to eo Thus as we approach a dead-load snapping point we observe C I

dropping to zero_ while as we approach a rigid-load snapping point we

observe the expression

_D
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tending to zero° These two conditions can on, be realized simuLaneous_

if SI is also _opping to zero; that is if we are approaching a poi_

of i_ersection with S I = C I = 0°

This phenomenon is clear_ visible in Fig_e 9, which mi_t represent

the behaviour of a constrained Eu_r strut under axial compression, with

varying degrees of initial imperfection (Tsien, _42). As the strut under

consideration slow_ changes with decreasing inperfection, the two snap-

ping points merge to give the branching point of the perfect strut°

6.6. Internal Stability With External Instability° An equilibrium

state of a structure might be internally and externally stable, or in®

ternally and externally unstable° The only other possibility, since

internal instability implies external instability, is that the state is

internally stable but externally unstable.

It is of some interest to examine the conditions under which this

last possibility can be realized.

Restricting attention to a perfectly general non-critical equilibrium

state_ let us suppose that _i' the smallest root of the equation

T i - ) : o

is positive_ so that the basic state is internally stable. Then if we

suppose that C I < C2 ( C 3 _ < Cm_ it follows from a result of Courant

and Hilbert (1953) that

not equal to one_ while

Let us suppose that

expansions

m

CI < Pl < C2° Thus Cs must be positive for

C I may be positive or negative°

C I is negative, and consider the two

38
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__ S2 2 2 S2\ ' m SI $2 m

£ c - Pl Cl- c2 c - 71i m

=0

S2. 2 2 S2
l_e = _ I SI+S2 m

path £ CI - CI _--_2+ "'° + --Cm

We see that in each expansion the first term is negative_ and the remaining

terms are positivev Moreover in changing from the first line to the

second line_ the negative term has increased in absolute magnitude_ while

the following positive terms have all decreased in magnitude° Clearly

the sum of the second series must be negative-

Thus if _i is positive and C I is negative_ the slope

must be negative° Moreover if CI is positive it is clear that the

slope will be positive°

It follows that if an equilibrium state of a structure is internally

stable it will also be externally stable unless the equilibrium path

passing through that state has a negative slope on a plot of the load

against the corresponding deflection° That is to say a state of internal

stability and external instability will always he associated with a nega-

tive slope on a plot of P against eo

A rigorous proof of this result has been presented in an earlier paper

(Thompson 1961a)_ in which it was shown to be of considerable value in

establishing the external stability of certain post®snapping equilibrium

states

39
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VIIo RESUME

The stability of an elastic structure subjected to a single generalized

load is discussed° Dead and rigid loading conditions, and the associated

external and internal stabilities of the structure are considered°

Two sets of generalized coordinates are introduced to define the

deformations of the structure° A set of m coordinates is used to

describe the deformed state of the structure when_ under dead loading

conditions_ the corresponding displacement is unconstrained° A set of

m - i coordinates is used to describe the deformed state of the structure

when_ under rigid loading conditions, values of the corresponding dis-

placement are prescribed°

The stability of a structural system described by an energy function,

V(Qi, A), has recently been discussed by the author: here the Qi are

a set of n generalized coordinates_ and A is a 'loading parameter'

Clearly if n is set equal to m, and the loading parameter A is

equated to the magnitude of the loadz this general theory is directly

applicable to the dead-load problem° Conversely if n is set equal to

m - i_ and the loading parameter is equated to the magnitude of the

imposed displacement, the general theory is directly applicable to the

rigid-load problem°

Thus the general theory, suitably interpreted, can serve as a dis-

cussion of the internal or external stability of a structure°

The presentation can moreover be further unified by the remarkable

reciprocal properties of the 'auxiliary loading parameter' _ which we

define by the equation Y = -(_V/_A) It is seen that when the loading

parameter A is equated to the magnitude of the generalized load in a

discussion of dead loading_ the auxiliary parameter • can be identified

as the corresponding deflection of the loado Conversely, when the loading

parameter A is equated to the magnitude of the imposed displacement_

the auxiliary loading parameter Y can be identified_ with a change of

sign_ as the magnitude of the constraining loado

40
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Keeping in mind the dual interpretation, the general theory can be

summarizedas follows°

The energy function V(Qi_ A) is first expandedas a power or
Taylor series about an equilibrium state of interest, lower case symbols

being introduced to denote changes in the variables from this state°

Then, introducing a locally principal set of coordinates ui_ we can
write to a first approximation

c.u - s.u.11

if we agree to ignore certain inactive terms which do not involve the

coordinates° Here the C. and So coefficients are constants for a
1 1

given basic equilibrium state_ the C. representing a set of stability
l

coefficients that defines the stability of the basic state°

the

The equilibrium path passing through the basic state is defined by

n equations (_v/_ui) = O, which can in general be solved to give

S

u = k --_r for all r
r C

r

Further_ since local changes in

by

¢ =_, S.u°11 + Tk

Y are given to a first approximation

where T is a constant, we can in general write

1 2
path

The stability of the basic equilibrium state is determined by the

stability coefficients_ Ci, which vary in a continuous manner as the

basic state under consideration is allowed to move along an equilibrium

path° It follows that the initial stability of a structure can only be

lost at a critical equilibrium state for which one of these coefficients,

CI say_ has dropped to zero°



If SI is not equal to zero_ the vanishing of CI implies the

vanishing of k/u I in the linearized analysis. A non-linear analysis
showsthat under these conditions the equilibrium path will in general

yield a locally maximumor minimumvalue of A at the critical equilibrium

state° The path thus exhibits the well-known snapping configuration°

If however SI vanishes simultaneously with CI_ we see that k/u I
is then linearly indeterminate. In this case it can be shownthat in gen-

eral two equilibrium paths intersect at thecritical equilibrium state

to give a point of bifurcation°

Thus we see that under either dead or rigid loading conditions, the

initial stability of a structure will in general be lost at a snapping

point (CI = 0), at which the equilibrium path of the structure reaches
the first locally maximumvalue of the imposed loading parameter° As a

special case (CI = SI = 0), the initial internal and external stabilities
of the structure may be lost simultaneously at a point of intersection°

The two direct treatments inherent in this unified presentation are

essentially distinct when applied to the samestructural problem° For

this reason it is instructive to study the internal stability of a structure

within the framework of a dead-load analysis_ as follows°

Consider the dead-load analysis supplied by equating A to the mag-

nitude of the generalized load_ in which Y can be identified as the
o and u. are now a set of m dead-loadcorrespondingdeflection° 'lhe Cl I

stability coefficients and principal coordinates respectively° The con-

stant T _ - (_2V/SA2) is identically zero_ and changes in the corres-

ponding deflection are given to a first approximation by

_=_ S.u.ii

It follows that the internal stability of the structure is in general

determined by the quadratic form

if 2= C.u.Z _ i i

with the constraint 62
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Thus the stationary values of Z on the 'sphere'

2
u. = 2
1

with the above constraint will supply a set of internal stabilitycoef-

ficients_ which are given in general by the m - i roots of the equation

s
C. - Z
1

= 0

For a loss of stability this equation must be satisfied by Z = O;

which gives the general condition for a loss of internal stability as

_i_= 0C.
1

Thus since

2

--
path

we see that a loss of internal stability will in general be associated

with an infinite slope on a plot of the load against the corresponding

deflection. The discussion of rigid-load snapping inherent in the gen-

eral analysis is thus confirmed.

The general equation supplying the internal stability coefficients

loses one of its roots if SI is equal to zero; and a more careful study

of the problem shows that the missing solution is given by Z = CI° That

is to say if SI = 0_ one of the internal stability coefficients is equal

to the corresponding external stability coefficient; CIO Clearly as a

special case not covered by the general criterion_ the internal stability

of a structure will be lost if S I and C I vanish simultaneously.

As we have seen earlier the simultaneous vanishing of SI and C I

in general yields a point of intersection. The previous conclusion that

43



_ii!_!ii__i__iii_ii_,__i_,_,__i

a point of intersection will be associated with a loss of internal sta-

bility is thus confirmed.

It is finally shown that if an equilibrium state of a structure is

internally stable it will also be externally stable unless the equilibrium

path passing through that state has a negative slope on a plot of the

load •against the corresponding deflection°
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APPENDIX I

The evaluation of the stationary values of

lZ 2Z = _ Ciu i

on the 'sphere'

V 2u. = 2

with the constraint

S.u. = 0i I

is here presented in detail. In this way the range of validity of the

'general' results quoted in section 6 is made apparent°

To determine the stationary values of Z we introduce the two

Lagrange multipliers (i/2)p I and P2' and consider the auxiliary

function

(z ) z= _ _, C ouolm ---2 Pl u.m - 2 02 S.u.mm

The stationary points of this function are also the stationary points of

Z_ so for the stationary values we must evaluate Z under the conditions

Z 2u. = 2 (A)
1

V (B)
L S.u. = 01 i

and

_E (c)
_-- = C u = 0 for all rr r PlUr - P2Sr

r

k , • • ,
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W_ can observe that these conditions represent

the n + 2 _unknowns' ui_ Pl and 02°

If we multiply the rth equation of

procedure for all values of r from i to

n equations_ we have

n + 2 equations for

C by Ur_ repeating this

n_ and then sum the resulting

Zm m - 01 u. - P2 S.u. = 01 1 1

Now using equations A and B this gives

lZ 2= C.u. = PlZ _ ii

Thus the evaluation of the stationary values of

tion of equations (A)j (B) and (C) fox' pl o

Equation (C) gives

Z reduces to the solu-

P2Sr
u = for all r
r C - o_

r

Substituting this expression for u in equation (A) gives
r

s
1

(Ci - 01 )2

=2
(D)

and substituting the expression for u in equation (B) gives
r

1

02 _, C i -01
- o (E)

Finally eliminating

equations we have the single equation for

V--_ 1 1

ci - oI (ci - Ol)2 :

02 (which might of course be zero) from these two

o (F

• •, , f.
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The n - i roots of this equation will supply the required station-

ary values of Z. We shall write 01 = Pl to represent a particular

solution of the equation°

Considering the evaluation of a particular solution_ and with a view

to dropping the denominator from the left-hand side_ let us examine under

what conditions the denominator of equation F can become infinite.

We shall assume that all the C. coefficients are distinct_ so that
1

C. _ C for all i _ jo Clearly then the denominator can only tend to
i j

infinity if 01 tends to one of the C.l coefficients_ CI say. Moreover

must be of an order greater than C I - _i _ so that (CI - 7_yS I isSI

tending to zero°

a

Assuming then that Pl _ CI and S I >> CI - 01 _ only the first term

of the denominator need be retained_ and equation (F) implies that

(2 2 )CI - 01 S I S2 +

Sl C1 ' _I + C2 - _i

= 0

Considering now the first term in the brackets_ we see that this equation

implies thaz S I must be tending to zero°

Thus the only solutions that the denominator can supply are repre-

sented by 01 = Cr_ which arises when Sr is equal to zero°

It follows that if no S. coefficient is equal to zero_ and if all
m

the C, coefficients are distinct_ we can omit the denominator andwrite
I

(o)\ 0
ci - Pl

The roots of this equation will in general yield the n - i station-

ary values of Z°

If however one of the S. coefficients drops to zero_ this equation
m

loses one of its roots_ and we have seen that the missing solution is

supplied by the denominator of equation Fo More specifically_ if p of

55- 47
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the Si, Si, _ ....Sp_ are equal to zero, equation (G) will supply

n - i - p stationary values of Z_ and the missing solutions will be

given by Pl = CI_ Pl = C2_ "°° Pl = Cp_ provided that all the C.z are

distinct.

If one of the stationary values of Z is to be equal to zero_ equa-

tion (F) must be satisfied by pl = O. Thus the condition for a vanishing

stationary value can be written as

Z -°-7 : o

If moreover no

that we have

Co is equal to zero_ the denominator can be omitted_ so
1

s
C.
1

(I)

which is the 'general' condition for a vanishing stationary value of

48
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APPENDIX II

The behaviour of a simple two-degree-of-freedom buckling model

is here used to illustrate the salient features of the paper, attention

being restricted to the initial equilibrium path of the model. The

loading of the model can be either dead or rigid in nature, and the

initial internal and external stabilitles of the system are lost simul-

taneously at a general point of bifurcatlon.

The behaviour of the model under dead load is studied, along the

lines developed in the paper_ for two initial sets of coordinates.

The first dead-load analysis involves a straight-forward choice

of the initial coordinates. These coordinates are always principal

along the 'unbuckled _ path, and the disturbance vector is always direct_

ed along the _first ' principal axis. The point of bifurcation thus

arises when the 'second' stability coefficient drops to zero.

A more instructive illustration of the buckling phenomenon is

obtained by studying the same problem in a more-general set of co-

ordinates. The analysis is thus repeated with a new set of initial

coordinates, a subsequent transformation of coordinates now being

necessary, since the new initial coordinates are not principal along

the equilibrium path. The principal axes and the disturbance vector

are seen to rotate as the basic state moves along the equilibrium path,

and the point of bifurcation arises when a stability coefficient and

the corresponding component of the disturbance vector vanish simul-

taneously.

Under rigid load the model has effectively one degree of freedom,

and its behaviour is studied, following the lines of the paper, for two

choices of the initial coordinate. In the first analysis the disturbance

vector is identically zero along the e_ilibriumpath, while in the

second analysis the vector is not identically zero_ but vanishes with

the stability coefficient a_ the critical equilibrium state.
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i. Structural System

The buckling model_ illustrated in Figure i0_ consists of a

i y2
smooth particle resting on the surface Z = X + _ constrained by

two springs lying in the horizontal XY plane, and loaded by a vertical

force P. The 'X' spring is linear_ with

Fx = X and Ux = _ ,

while the 'Y' spring is non-linear_ with

F = y Iy2 iy2 i 3
Y - _ and Uy = _ - _ Y

for Y _ 3. Here xF and F, and U and U are the constrain-y x y

ing forces and the strain energies of the two springs.

When the loading is dead_ it follows that the total potential

energy of the system can be written as

i _ .

i_ + iy2
v= 7

I y3

-P x + Y (A)

2. Dead-Load Analysis in the Basic Coordinate System

Let us first consider the dead-load problem using the basic

(X,Y) coordinate system.

2.1 Equilibrium Paths. The total potential energy is given by equa-

tion (A)_ and setting

_V

_-_ = 0 gives X = P ;

_V

setting _-_ = 0 gives Y = 0

or Y = 2(I-P)
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The corresponding deflection, E = Z, is thus given by

= P or _ = P + 2(I-P) 2

Clearly, we have two equilibrium paths exhibiting an exchange of

stabilities at the Vgeneral v point of bifurcation,

P=X= i, Y=O .

The equilibrium paths are shown in Figure ii, in which a broken curve

indicates a region of external instability.

2.2 Loaded Equilibrium State - Following the general discussions
m

of the paper, let us consider the loaded 'unbuckled' equilibrium state,

P= Pn, x=x o:Po, _ =°, (B)

and let us write

p=P-P
o

, x=X-X o , y=Y o

The total potential energy can now be written as

_p2 + ½x 2 + (l_Po)½y2V = - 2 0
(i/6)y3

_p(po + x + ½y2) (c)

We see that along the initial path the (x,y) coordinate system

is always principal. The stability coefficients are

_2V

Cx _ _X2 : I

_2v

C _-- i Poy _y2 : -

(D)

and the components of the disturbance vector are

_z _2v
S _ _ _ - 7Yg-6-f-: ix

_z _2v
s _ Z_ _ - ZgZ7 : oY

(_,)
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Viewed in the basic coordinates (X,Y), the behaviour of the

system in the vicinity of the initial path is thus extremely simple.

The (X,Y) coordinates themselves are always principal, the component

S is always zero_ and the stability coefficient C drops to zero
Y Y

at the critical equilibrium state.

3. Dead-load Analysis in a More-general Coordinate System

It is instructive to study the dead-load problem in a more-

general coordinate system° In this way it will be seen that the simple

behaviour observed above is a property of the coordinates employed,

rather than a property of the system itself.

3.1 Definition of Coordinates - We define_ somewhat arbitrarily a

new initial set of coordinates by the equations

QI = i (x-z)

Q2 =
(x+z) ¼ (x-z)2

(F)

These equations can be inverted to give

2

X = QI + Q2 + QI

2

Y = Q2 - ql + QI

(a)

and we can write the Jacobian determinant of the transformation as

= 2

Curves of constant X and constant Y are shown on a plot of

QI against Q2 in Figure 12_ and it can be observed that the two sets

of coordinates are not mutually orthogonal.

._ _ _ _ /,,. ,_[_ i '_,(_ •?_
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3.2 Loaded Equilibrium State - Considering changes from the basic

equilibrium state of equation (B), linearizing the energy expansion,

and dropping certain inactive terms, the change in energy from the

basic state can be written as

N i 2 m p3) + ½q2 (2- Po)2ql ( 2- Po+ _ F2o o 2

+ qlq213Po_ Po21-p ll+ Pol ql + q

We observe that the qi coordinates are not principal°

Following the lines of the general discussion we must now find

the orthogonal transformation that will diagonalize the quadratic form

of v o Any orthogonal transformation of two variables can be written

in the form

u I = ql cos _ - q2 sin

u2 = ql sin _ + q2 cos

(1)

so we shall use these equations to define the new coordinates u. ,m

choosing _ to eliminate the _madratic cross-term of v

The necessary value of _ is given by the equation

2P -6
O

Tan 2 _ = __ p _ p2
O o

and in the principal coordinates u.

2I

= _ Clu I

- P ISlUl

i

where CI = g ( J + Po H)

I

we have finally
i

+ ½ C2 u22

+ S2u 2 ___.._.

(J)
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and S = cos _ sin _ + P cos
i o

S 2 = cos _ _ sin _ + Po sin

2
Here J ---_' 2 P + 4 P P _

o o O

and H _ + J36 - 24 Po + 20 p2 - 8 p3 + p4
O O O

The basic equilibrium state being defined by the value of P ,
o

it is seen that the principal axes rotate as the basic state is allowed

to move along the equilibrium path0 Moreover, no energy coefficient is

identically zero along the path, and it is readily verified that the

two coefficients C 2 and S 2 vanish simultaneously at the critical

equilibrium state for which P = i.o

The rotation of the principal axes (slightly exaggerated for

clarity), and the rotation of the disturbance vector are shown in Fig.

12. The relevant angles are defined in Fig. 13, and can be evaluated

from the equations

2 (3-Po)
Tan 2 _ = - po--__po )

Tan 2

Tan 2 7

The variations of C I and C 2 with Po are shown in Figure 14.

4. Rigid load Analysis in the Basic Coordinate System

Let us now study the initial equilibrium path of the model in

the context of a rigid-load analysis following the lines of the general

analysis of the paper.

When the corresponding deflection, c , is constrained the model

has one degree of freedom, and we shall here choose Y as the single

- 42-
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coordinate.

energies U
x

The appropriate energy function is the sum of the strain

and U , so we can write

- C

V = U x + Uy = ½ y2 (1/6)y3+ (1/8)y4 

In contrast to the energy function of the dead-load analysis,

we see that V is not linear in the loading parameter (c _ A)

have

Considering changes from the basic state of equation (B), we

v = (½Y2 (l-c°) - (i/6) Y3 + (i/8) Y4_ (K)

- e - c +½y +½e
0

where e is the change in c . Thus the single rigid-load stability

coefficient C and the single component of the disturbance vector
Y

S are given by
Y

82v
C - = i - co = I - P
y - _y2 o

82V

Sy- --_-gg_-y = 0

We see that along the path the disturbance vector is identically

zero, and the stability coefficient drops to zero at the critical equi-
state

librium_for which Po = i.

5o Rigid-load Analysis in a More-general Coordinate System

It is instructive to repeat the rigid_load analysis using a 'more-

general' coordinate, Q, which we define as follows

Q = X- y+½Y 2



The appropriate energy function is now

V _ U x +Uy = 2 + (1/6)Q3+ (1/S)Q4)

+e i+ ,Q+ Q

c3 2+_

so that

_2V

CQ = _ = I- c = i- Po o

_2V

SQ _ _ = i - co = i _ Po

We see that the disturbance vector is not now identically zero

along the path, but vanishes with the stability coefficient at the

critical equilibrium state for which Po = i

60
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